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Abstract
MLIR’s ability to optimize programs at multiple levels of ab-
straction is key to enabling domain-specific optimizing com-
pilers. However, expressing optimizations remains tedious.
Optimizations can interact in unexpected ways, making it
hard to unleash full performance.
Equality saturation promises to solve these challenges.

First, it simplifies the expression of optimizations using
rewrite rules. Secondly, it considers all possible optimiza-
tion interactions, through saturation, selecting the best pro-
gram variant. Despite these advantages, equality saturation
remains absent from production compilers such as MLIR.

This paper proposes to integrate Egglog, a recent equality
saturation engine, with MLIR, in a dialect-agnostic manner.
This paper shows how the main MLIR constructs such as
operations, types or attributes can be modeled in Egglog. It
also presents DialEgg, a tool that pre-defines a large set of
common MLIR constructs in Egglog and automatically trans-
lates between the MLIR and Egglog program representations.
This paper uses a few use cases to demonstrate the potential
for combining equality saturation and MLIR.

CCS Concepts: • Software and its engineering → Com-
pilers.

Keywords: MLIR, Equality Saturation, Egg, Egglog
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1 Introduction
Since the early days of Fortran, to today’s high-level pro-
gramming languages, compiler optimizations have driven
the adoption of compiler technology [1]. In the C/C++ world,
LLVM [4] has pushed compiler technology forward with its
modular approach to optimization. This modularity stems
from the design of the LLVM IR (Intermediate Representa-
tion) which offers a single abstraction to represent programs.
While this single abstraction enables code reusability, it has
become a limitation in the era of domain-specific hardware
and language which requires domain-specific abstractions.
Building upon LLVM’s success, MLIR [5] represents and

transforms programs at multiple abstraction levels. MLIR
allows high-level operations such as matrix multiplication
or convolutions, mid-level loop structures, and low-level
hardware-specific instructions to coexist in the same IR. This
is achieved by introducing the concept of a dialect, a set of
operations and types that are specific to a domain (e.g., linear
algebra, GPU (Graphics Processing Unit) programming).

However, optimizing MLIR programs is challenging. Opti-
mization passes at different levels of abstraction may interact
in unpredictable ways from a performance point of view. Op-
timization decisions are typically done locally with heuristics,
without consideration for global optimally. Furthermore, de-
termining the optimal sequence of optimizations — the phase
ordering problem — is a well-known challenge.

Equality saturation [11] is a recent novel approach to op-
timization. It represents all equivalent programs simultane-
ously in an e-graph. Optimizations are expressed as rewrite
rules and are applied to the e-graph until a fixed point is
reached. The globally optimal program variant is extracted
using a cost model, bypassing the phase ordering problem.
Equality saturation has recently matured with the avail-

ability of the high-performance Egg library [13] and the
Egglog [16] DSL (Domain-Specific Language) and system.
Egglog combines a high-performance equality saturation
engine with the ability to express rewrites in a subset of
Datalog. As we will see, Egglog makes it particularly suitable
to express compiler optimizations in a declarative way.
This paper presents DialEgg, an MLIR optimizer that is

dialect-agnostic and extensible. DialEgg combinesMLIRwith
Egglog in a unified tool. DialEgg discovers globally optimal
programs with equality saturation. Using DialEgg, analysis
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and optimizations are expressible concisely with Egglog and
are applicable to any MLIR program in any dialect.

The paper describes how different MLIR concepts, such as
operations, types, and attributes are expressed in Egglog. It
also shows how to express customized cost models in Egglog,
leveraging MLIR type information, such as tensor dimen-
sions. Four use cases are presented, illustrating DialEgg’s
ability to express and apply optimizations that span multiple
abstraction levels, dialects, and IR components within MLIR.
The paper evaluates DialEgg’s performance on a small

suite of benchmarks based on the use cases. It compares
DialEgg-optimized programs against programs optimized by
a traditional MLIR optimization pass. The evaluation shows
that DialEgg handles a variety of use cases, with performance
on par with the classical MLIR optimization pipeline.

To summarize the contributions, this paper:

1. Presents an open source tool that combines MLIR with
equality saturation in a dialect-agnostic way;

2. Shows how MLIR constructs are expressed in Egglog;
3. Shows how optimizations and custom cost models are

simply expressed with Egglog using MLIR operations;
4. Present experimental evidence that DialEgg is able to

optimize, demonstrating the potential for this tool.

2 Background
2.1 MLIR
MLIR [5] represents programs at multiple levels of abstrac-
tion. MLIR allows high-level operations such as matrix multi-
plication, mid-level loop structures, and low-level hardware-
specific instructions to coexist in the same IR. MLIR opera-
tions are grouped into domain-specific dialects with passes
that optimize within a dialect or translate between dialects.

2.1.1 MLIR Operations. MLIR represents all constructs
as operations, from high-level modules and functions to
lower-level computations and control flow elements such
as loops and if-then-else statements. All operations have a
name, input operands, output results, attributes, and regions.

Inputs and outputs An operation takes operands as input
and can produce several results as output. Both operands and
results are typed values in SSA (Static Single-Assignment)
form. MLIR uses a static strong type system, defining the
type of all operation inputs and outputs. MLIR supports both
built-in types (e.g., integers, floats) and user-defined types.

Attributes Attributes are compile-time properties attached
to operations. They are typed and represent constants, names,
or other metadata that influence the behavior of operations.

Regions and blocks Operations can have multiple re-
gions, each representing a list of blocks. Each block contains
a list of operations. This recursive structure enables the rep-
resentation of control flow and nested computations.

1 func.func @classic(%a: i64) -> i64 {
2 %c2 = arith.constant 2 : i64
3 %a2 = arith.muli %a, %c2 : i64
4 %a_2 = arith.divsi %a2, %c2 : i64
5 func.return %a_2 : i64 }

Listing 1.MLIR implementation of (𝑎 · 2)/2

2.1.2 MLIR Dialects. MLIR’s extensibility is primarily
achieved through its dialects, collections of related oper-
ations, types, and attributes. The builtin dialect provides
fundamental types (e.g., integers, floats) and attributes (e.g.,
int attributes, string attributes, array attributes); The arith
dialect focuses on arithmetic operations such as addition,
bitshifts, casts, and comparisons;Math focuses on mathemat-
ical operations such as trigonometric functions, logarithms,
and exponentials; Linalg represents linear algebra operations
and transformations; And scf represents structured control
flow such as loops and if-then-else statements.

2.1.3 MLIR Passes. MLIR passes are applied to MLIR pro-
grams to perform analysis, optimization, or lowering. An
important pass in MLIR is the canonicalization pass which
transforms the IR into a standardized form. Canonicalization
also simplifies the IR by applying algebraic simplifications,
constant folding, and other dialect-specific normalizations.

2.1.4 MLIR Example. We now look at an example of how
a function that computes (𝑎 · 2)/2 is represented in MLIR
using the func and arith dialects shown in listing 1. The
func.func operation represents the function. It has two
attributes, the function type and the symbol name, and one
regionwith one block. The block has one argument, a, of type
i64. Line 2 shows a constant, where the value 2 is actually
represented as an attribute in MLIR attached to the operation.
The rest of the listing should be self-explanatory.

2.2 Equality Saturation
Equality saturation [11], is a decade-old approach to program
optimization that addresses the phase ordering problem.
E-graph Equality saturation builds a compact represen-
tation of all equivalent programs simultaneously, called an
e-graph. An e-graph consists of a set of e-classes which con-
tain e-nodes. All e-nodes in the same e-class are equivalent.
Saturation and rewrite rules The program e-graph is
saturated using a fixed-point algorithm that applies rewrite
rules. A rewrite rule specifies an equivalence between two
patterns of e-nodes. For example, 𝑎 · 2 ⇔ 𝑎 ≪ 1 is a rewrite
rule specifying an equivalence between an e-node represent-
ing a multiplication and an e-node representing a left-shift.
Extraction and cost model Once saturated, the best ex-
pression is extracted from the e-graph using a cost model,
also called the profitability heuristic. The process starts from
the root node in the e-graph. Each e-class selects the lower-
cost e-node and proceeds recursively with the children.
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Figure 1. Example of e-graph before and after saturation.
The lighter e-nodes are added after saturation.

Example We now look at an example of applying equality
saturation to (𝑎 · 2)/2 using the following rewrite rules:

𝑥/𝑥 ⇒ 1
𝑥 · 1 ⇒ 𝑥

𝑥 · 2 ⇔ 𝑥 ≪ 1
(𝑥 · 𝑦)/𝑧 ⇔ 𝑥 · (𝑦/𝑧)

After saturation, the e-graph in fig. 1 shows the original
expression is equivalent to 𝑎, but also to (𝑎 ≪ 1)/2 among
other alternatives. If the cost model minimizes the number
of operations, the extracted “optimal” program would be 𝑎.

2.3 Egglog
Egglog [16] is a recent DSL combining the declarative nature
of Datalog with equality saturation. It can be used to express
e-node types and rewrite rules and also provides a rich set of
built-in commands for defining and manipulating e-graphs.

2.3.1 Egglog Constructs.
Datatypes An e-node type is defined using the sort com-
mand. This defines a sum type, where each variant represents
a different kind of e-node, expressed with the function com-
mand and the e-node type as the last argument (Expr). The
cost can be set for each variant type, as seen below.

The datatypes for a simple arithmetic language consisting
of constants, variables, and operations could be defined as:
1 (sort Expr)
2 (function Num (i64) Expr :cost 1)
3 (function Var (String) Expr :cost 1)
4 (function Add (Expr Expr) Expr :cost 1)
5 (function Mul (Expr Expr) Expr :cost 2)
6 (function Div (Expr Expr) Expr :cost 2)
7 (function Shl (Expr Expr) Expr :cost 1)

The expression (𝑎 · 2)/2 seen earlier, would then be ex-
pressed in Egglog using a let-binding as:
1 (let expr (Div (Mul(Var "a")(Num 2)) (Num 2)))

Rewrite rules Rewrite rules express equivalence and are
defined using the rewrite command. The rewrite rules seen
earlier are expressed in Egglog as:
1 (rewrite (Div ?x ?x) (Num 1)) ; x / x => 1
2 (rewrite (Mul ?x (Num 1)) ?x) ; x * 1 => x
3 (rewrite ; x * 2 => x << 1
4 (Mul ?x (Num 2)) (Shl ?x (Num 1)) )
5 (rewrite ; (x * y) / z => x * (y / z)
6 (Div (Mul ?x ?y) ?z) (Mul ?x (Div ?y ?z)))

Equality Saturation Engine

User Defined DialEgg

Cost
Model

MLIR
Code

Optimized
MLIR Code

Custom
Egglog Defs

Built-in
Types

Translator
MLIR

↓
Egglog

Egglog
Rewrites

Translator
MLIR

↑
Egglog

Built-in
Attrs

Built-in
Ops

Figure 2. Overview of the DialEgg architecture.

The ? represents variables in Egglog, which can appear in
the pattern to be matched (first argument of rewrite) or the
newly rewritten term (second argument of rewrite).
Primitives Egglog has built-in support for types such as
integers, floats, or strings. These are represented as i64,
f64, and String respectively. Each type supports primitive
operations, such as addition, division, and comparisons.

3 DialEgg Overview
DialEgg bridges the gap between MLIR’s extensible, multi-
level abstractions, and Egglog’s expressive equality satura-
tion engine. The contributions of this paper are twofold. First,
it presents a dialect-agnostic methodology to represent and
optimize MLIR constructs within the Egglog DSL. Secondly,
DialEgg provides pre-defined built-in constructs and auto-
matic translation between MLIR and Egglog representations.

The architecture of DialEgg is illustrated in fig. 2. DialEgg
takes in MLIR code, translates it to Egglog, applies user-
defined optimizations in Egglog, and then translates the
optimized representation back to MLIR. DialEgg uses the
expressiveness of Egglog for defining complex optimizations
as rewrites while maintaining compatibility with MLIR.
Pre-defined constructs DialEgg comes with Egglog rep-
resentations for commonly used MLIR types and attributes
from the builtin dialect. These constructs can be combined
with user-defined ones by the Egglog saturation engine.
User-defined constructs When integrating a new MLIR
dialect with DialEgg, three major steps are required. First, the
user needs to define the MLIR constructs needed in Egglog
if not already provided. This information is used by both
the translation process and the saturation engine. Next, the
user can define a custom cost model in Egglog for every
MLIR operation, which will guide the optimization process.
Finally, the user defines optimizations as Egglog rewrite rules,
specifying how MLIR constructs should be transformed.
Translation layer This layer handles the bidirectional
translation between MLIR and Egglog representations. The
translation preserves all relevant structures of the MLIR
code in the Egglog representation. Operations not explicitly
represented in Egglog are treated as black boxes. While these
will not be rewritten, they will “survive” the optimization
process and re-appear in the transformed MLIR code.
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1 (sort Type)
2 (function F32 () Type) ; no argument
3 (function I64 () Type) ; no argument
4 (function None () Type) ; no argument
5 (function RankedTensor (IntVec Type) Type)
6 (function UnrankedTensor (Type) Type)
7 (function OpaqueType (String String) Type)

Listing 2. Example of MLIR Types expressed in Egglog.

By integrating all these components, DialEgg provides a
framework for MLIR optimization that combines the flexibil-
ity of MLIR with the optimization capabilities of Egglog.

4 Representing MLIR Constructs in Egglog
When using DialEgg, the user first needs to create the Egglog
data structures corresponding to theMLIR dialects of interest.
This includes defining any types, attributes, and operations.
Blocks and regions are automatically handled by DialEgg.

4.1 Types
Pre-defined types DialEgg comes with a representation
of pre-defined MLIR types in Egglog. This includes most of
the MLIR types from the MLIR’s builtin dialect, as well as
common types such as integer types, floating point types,
tuple types, complex number types, and tensor types.

All the types are simply represented in Egglog as variants
of the Type datatype, as illustrated in listing 2. Note that the
type definitions only need to be done once per MLIR dialect.

A 32-bit float, for instance, would be represented as (F32),
while a ranked tensor of 64-bit integers with dimensions
2x3 would be expressed as follows using the Egglog vec-of
primitive which produces a vector of integer (IntVec):

1 (RankedTensor (vec-of 2 3) (I64))

User-provided types Users can add new types in Egglog
if required, by adding another type variant, using the same
type name in Egglog andMLIR. This ensures that the DialEgg
translation between MLIR and Egglog is able to associate
each Egglog type with the corresponding MLIR type.
Opaque types In case an MLIR type does not have a cor-
responding Egglog type declared, it will be automatically
translated to the OpaqueType variant. The first String is a
serialized representation of the MLIR type, while the second
String is its name. This information is used to rebuild the
MLIR type during translation from Egglog to MLIR, although
it should be used sparingly to maintain expressiveness.

The advantage of using pre-defined or user-defined types
is that they can make the rewrites aware of the MLIR types.
For instance, one could express the fact that only integer
addition is commutative (as opposed to floating point):

1 (rewrite (Add (Add ?x ?y (I64)) ?z (I64))
2 (Add ?x (Add ?y ?z (I64)) (I64)))

1 (sort Attr)
2 (function IntegerAttr (i64 Type) Attr)
3 (function FloatAttr (f64 Type) Attr)
4 (function DenseIntArrayAttr(i64 IntVec Type) Attr)
5 (function DenseFPElementsAttr(FloatVec Type) Attr)
6 (function SymbolRefAttr (String) Attr)
7 (function OpaqueAttr (String String) Attr)
8 (datatype AttrPair (NamedAttr String Attr))
9 (datatype FastMathFlags (none) (reassoc) (nnan)

(ninf) (nsz) (arcp) (contract) (afn) (fast))
10 (function arith_fastmath (FastMathFlags) Attr)

Listing 3. Example of MLIR Attributes encoded in Egglog.

1 (sort Op)
2 (function arith_constant (AttrPair Type) Op)
3 (function arith_addf (Op Op AttrPair Type) Op)
4 (function arith_addi (Op Op AttrPair Type) Op)
5 (function math_sin (Op AttrPair Type) Op)
6 (function math_powf (Op Op AttrPair Type) Op)
7 (function tensor_empty (Type) Op)
8 (function linalg_matmul (Op Op Op Type) Op)
9 (function func_call (AttrPair Type) Op)

Listing 4. Example of MLIR Operations in encoded in Egglog

4.2 Attributes
DialEgg already provides many of the attributes defined

in the builtin dialect, with a few examples shown in list-
ing 3. Opaque attributes are available as well. Similar to the
types, MLIR attributes are represented as variants of the Attr
datatype. Users can either use the pre-defined attributes or
add new ones. For instance, an int attribute with constant 1
is represented as (IntegerAttr 1 (I64)).
Lines 9 and 10 of listing 3 present the arith_fastmath

attribute, a custom attribute defined in the arith dialect. The
arith_fastmath attribute takes a FastMathFlags variant
as a parameter, which is a direct translation of MLIR enum
FastMathFlags (sum types can also use the datatype key-
word in Egglog). Depending on the value, more aggressive
optimizations can be triggered for floating point operations.
Named attributes MLIR operations do not use attributes
on their own, they store a list of named attributes, as dis-
cussed in section 2. Below is an instantiation of the named
attribute {value = 1} expressed in Egglog:
1 (NamedAttr "value" (IntegerAttr 1 (I64)))

4.3 Operations and Values
MLIR operations are represented as variants ofOp datatype.

Listing 4 contains examples of some MLIR operations. Di-
alEgg already comes equipped with many operations pre-
defined. The user can extend this set by adding extra variants.
The name of each variant starts with the dialect name

followed by the operation name. The list of parameters for
eachOp in Egglogmust match the structure of corresponding
MLIR operations to enable automatic translation.
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Operations with variadic operands For operations with
a variable number of operands, such as the MLIR func.call,
DialEgg allows definingmultiple variants with different num-
bers of parameters. The number of parameters is appended
to the end of the variant name. For instance:

1 (function func_call_0(AttrPair Type) Op)
2 (function func_call_3(Op Op Op AttrPair Type) Op)

Values Values can be either the result of an operation, or
a block argument. MLIR values in DialEgg are represented
as the Value variant of the Op datatype, as illustrated below:

1 (function Value (i64 Type) Op) ; Value(id,type)

The id parameter is a unique identifier for the value, and the
type parameter is the type of the value.
Opaque operations MLIR operations that are not defined
in DialEgg become opaque operations. Opaque operations
are represented automatically as a Value variant. This en-
ables users of DialEgg to ignore irrelevant operations, while
still allowing Egglog to optimize around them. This is a
key feature of DialEgg which allows a user to only define
the Egglog constructs related to the dialect of interest, with
any undefined MLIR construct simply being mapped to an
opaque representation.

4.4 Blocks and Regions
Blocks and regions are fundamental constructs in MLIR that
represent hierarchical structure. DialEgg provides a repre-
sentation for these in Egglog that maintains their semantics.
In Egglog, regions are ordered lists of blocks, and blocks

are ordered lists of operations, as seen below. Block argu-
ments are represented using the Value variant, as seen earlier.

1 (sort OpVec (Vec Op)) ; Vector of Operations
2 (datatype Block (Blk OpVec)) ; Block
3 (sort BlockVec (Vec Block)) ; Vector of Blocks
4 (datatype Region (Reg BlockVec)) ; Region

5 Translation Between MLIR and Egglog
The translation layer in DialEgg is a core component that
enables the integration of MLIR and Egglog. This section
details the bidirectional translation process, explaining how
MLIR constructs are represented in Egglog and vice versa.

5.1 Preparation Phase
DialEgg first processes the pre-defined and user-defined Eg-
glog files where it identifies all MLIR construct declarations
present in the file. For each construct, DialEgg registers it and
records essential information such as the expected number
of operands, attributes, regions, and associated cost.

5.2 Support for Custom Types and Attributes
DialEgg provides a flexible, semi-automatic, mechanism for
handling the rare cases where custom attributes and types

are needed. At the time of writing, the user must implement
two small C++ functions for each custom type or attribute: an
eggifier and a de-eggifier. The eggifier function is responsible
for printing the Egglog representation of an MLIR type or
attribute. Conversely, the de-eggifier function parses the
Egglog representation and builds the corresponding MLIR
constructs. In the near future, DialEgg will be improved to
support the automatic generation of the eggifier and de-
eggifier function.

5.3 Translation Between MLIR and Egglog
Translating MLIR operations to Egglog involves traversing
theMLIR program structure recursively, depth-first, to create
the Egglog counterparts. MLIR constructs that do not have
any declared Egglog counterparts are automatically treated
as opaque constructs as explained earlier. Custom types and
attributes make use of the user-provided eggifier function.
The semantics of the MLIR program is preserved by the

translation. Thanks to the SSA form of MLIR, any definition
of an SSA value will be translated into a let-binding in Egglog.
This is the classical way to model SSA values in functional
languages. Once the e-graph is constructed, equivalent ex-
pressions are unified into the same e-nodes, and let-bindings
simply disappear. For opaque operations, DialEgg assigned
a unique identifier to each of them as shown in section 4.3.
The identifier is exposed in Egglog, ensuring every opaque
expression is treated as distinct e-nodes in the e-graph.

After saturation, DialEgg translates the optimized Egglog
representation back into valid MLIR code. The translator
parses the Egglog code, systematically converting Egglog
constructs back into their MLIR equivalents. The process
heavily relies on the information gathered during the ini-
tial preparation phase and the de-eggifier functions for the
custom types and attributes.
The semantics is preserved by the translation. E-nodes

that appear multiple times in the extracted expression are
turned into a single SSA value definition with multiple uses.

5.4 Example

We now show an example of computing
√︁
|𝑥 | in MLIR and its

Egglog translation. The MLIR code mixes four dialects: func,
arith, scf, and math, and uses values, operations, attributes,
types, and regions:

1 func.func @sqrt_abs(%x: f32) -> f32 {
2 %zero = arith.constant 0.0 : f32
3 %cond = arith.cmpf oge , %x, %zero : f32
4 %sqrt = scf.if %cond -> (f32) {
5 %sqrt = math.sqrt %x fastmath <fast > : f32
6 scf.yield %sqrt : f32
7 } else {
8 %neg = arith.negf %x : f32
9 %sqrt = math.sqrt %neg : f32
10 scf.yield %sqrt : f32
11 }
12 func.return %sqrt : f32 }
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The corresponding translation to Egglog is:

1 (let fmnone (NamedAttr "fastmath"
(arith_fastmath (none))))

2 (let fmfast (NamedAttr "fastmath"
(arith_fastmath (fast))))

3 (let op0 (Value 0 (F32))) ; argument 'x'
4 (let op1 (arith_constant (NamedAttr "value"

(FloatAttr 0.0 (F32))) (F32)))
5 (let op2 (arith_cmpf op0 op1 fmnone (NamedAttr

"predicate" (IntegerAttr 3 (I64))) (I1)))
6 (let op3 (math_sqrt op0 fmfast (F32)))
7 (let op4 (scf_yield op3))
8 (let op5 (arith_negf op0 fmnone (F32)))
9 (let op6 (math_sqrt op4 fmnone (F32)))
10 (let op7 (scf_yield op6))
11 (let op8 (scf_if op2
12 (Reg (vec-of ; then branch
13 (Blk (vec-of op3 op4))))
14 (Reg (vec-of ; else branch
15 (Blk (vec-of op5 op6 op7))))
16 (F32)))
17 (let op9 (func_return op8))

Lines 1–2 define variants of the attribute arith_fastmath.
Line 3 corresponds to the function argument %x: argument 0.
Line 4 corresponds to the arith_constant op on line 2 of
theMLIR code. The value of the constant is a named attribute,
translated just as discussed is section 4.2. Line 5 corresponds
to the arith_cmpf op on line 2 of the MLIR code. This oper-
ation takes as input 2 operands and 2 named attributes. The
second named attribute defines the comparison predicate, 3
stands for the ordinary greater than (oge) predicate.
Line 6 corresponds to the math_sqrt op on line 5 of the

MLIR code. Line 7 corresponds to the scf_yield op on line 6
of the MLIR code. Line 8 corresponds to the arith_negf op
on line 8 of the MLIR code. Line 9 corresponds to math_sqrt
op on line 9 of the MLIR code.
Lines 11–16 corresponds to the scf_if op on lines 4–11

of the MLIR code. This operation has 2 regions, one for the
if and another for the else. Each region has a single block,
which in turn has a list of its operations. Line 17 corresponds
to the return on the last line of the MLIR code.

6 Cost Model in Egglog for MLIR Dialects
Having seen how the MLIR constructs are represented and
translated into Egglog, we now turn our attention to how a
user specifies a costmodel. The costmodel plays a crucial role
in guiding the optimization process with equality saturation.

6.1 Fixed Cost
Egglog makes it easy to define a direct fixed cost to specific
MLIR operations. The following example assigns different
costs to division and right shift operations:

1 (function arith_divsi (Op Op Type) Op :cost 2)
2 (function arith_shrsi (Op Op Type) Op :cost 1)

1 (rule
2 (( linalg_matmul ?x ?y ?xy (RankedTensor ?d ?t))
3 (= ?a (nrows (type-of ?x)))
4 (= ?b (ncols (type-of ?x)))
5 (= ?c (ncols (type-of ?y))))
6 (( unstable-cost
7 (linalg_matmul ?x ?y ?xy (RankedTensor ?d ?t))
8 (* (* ?a ?b) ?c))))

Listing 5. Matrix multiplication cost model

1 (function nrows (Type) i64)
2 (function ncols (Type) i64)
3 (rule ; if a tensor, define nrows and ncols
4 (= ?t (RankedTensor ?shape ?))
5 ((set (nrows ?t) (vec-get ?shape 0))
6 (set (ncols ?t) (vec-get ?shape 1))))

Listing 6. Dimension analysis helper functions

This example defines that an MLIR signed integer divi-
sion operation (arith.divsi) has a cost of 2, while a right
shift operation (arith.shrsi) has a cost of 1. By assigning
these costs, Egglog will prefer to extract expressions from
the e-graph with right shifts rather than division whenever
possible. If no cost is assigned, a default cost of 1 is assumed.

6.2 Variable Cost
Sometimes, the cost of an operation might depend on the in-
put data shape. For instance, the cost of matrix multiplication
depends on the number of rows and columns.

Listing 5 defines in Egglog the cost ofmatrixmultiplication
based on the number of scalar multiplications performed.
Two helper functions, nrows and ncols, extract the row and
column count and are explained later. The type-of helper
function returns the operation’s type.
The cost in listing 5 is computed with a rule matching

on a linalg_matmul e-node in the e-graph, which then sets
the cost of the e-node with the unstable-cost command,
depending on some parameters. unstable-cost is a new
command specifically added into Egglog to support the use-
case presented here. During extraction, Egglog will use this
information to establish whether this matmul operation has
a lower cost than any other in the equivalence class.
Dimension analysis Listing 6 shows two helper func-
tions, nrows and ncols to return the dimensions of tensor
types. The rule here matches for all RankedTensor types
and defines nrows and ncols as the number of rows and
columns in the tensor shape, respectively.
By using these flexible cost modeling capabilities, Dia-

lEgg enables sophisticated optimization strategies that can
adapt to different optimization goals, hardware targets, and
program characteristics. This cost-aware approach allows
DialEgg to make informed decisions throughout the opti-
mization process, potentially leading to more efficient code
compared to traditional, fixed-sequence optimization passes.
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1 (rule ((= ?lhs (arith.divsi ?x (arith.constant
(NamedAttr "value"(IntegerAttr ?n ?t)) ?t)
?t)) ; match x / n

2 (= ?k (log2 ?n )) ; set k = log2(n)
3 (= ?n (<< 1 ?k ))) ; check n = 2^k
4 (( union ?lhs (arith.shrsi ?x (arith.constant

(NamedAttr "value" (IntegerAttr ?k ?t))
?t) ?t))))

Listing 7. Division by a power of 2 is equivalent to a right
shift by the log2 of the divisor.

7 Case Study of Optimizations with Egglog
Having seen how a user expresses custom cost models, this
section now looks at expressing optimizations for MLIR us-
ing rewrite rules in Egglog. It presents one toy examples and
four case studies in increasing order of complexity.

7.1 Constant Folding
Constant folding is a simple optimization that is standard in
most compilers. Consider the following MLIR code which
exhibits a constant addition that can be folded:
1 %c2 = arith.constant 2 : i32
2 %c3 = arith.constant 3 : i32
3 %sum = arith.addi %c2, %c3 : i32

The following Egglog rewrite rule expresses constant folding:
1 (rewrite
2 (arith_addi ; x + y
3 (arith_constant ; x
4 (NamedAttr "value"(IntegerAttr ?x ?t))?t) ?t)
5 (arith_constant ; y
6 (NamedAttr "value"(IntegerAttr ?y ?t))?t) ?t)
7 (arith_constant ; evaluate x+y into a constant
8 (NamedAttr "value" (IntegerAttr (+ ?x ?y) ?t))
9 ?t))

This rule matches any addition of two integer constants,
whose value are stored as an attribute in MLIR, and replaces
it with a new constant representing their sum (using the
highlighted + Egglog primitive). After applying this rule, the
optimized MLIR code would look like this:
1 %sum = arith.constant 5 : i32

While this example is straightforward, it demonstrates the
ability to perform local optimizations through rewriting.

7.2 Conditional Rewrite Rules
Conditional rewrite rules inDialEgg allow for context-sensitive
optimizations, enabling more precise and targeted optimiza-
tions. Using the cost model defined in section 6.1, we now
show a conditional rewrite rule that optimizes integer divi-
sion by a power of 2 into a more efficient bitwise right shift
operation. This rewrite rule is shown in listing 7.
This rewrite is more complex than others since it needs

to be conditionally applied and perform computations. Line
1 matches for a signed integer division of 𝑥 by a constant 𝑛.

1 (let fattr
2 (NamedAttr "fastmath" (arith.fastmath (fast))))
3 (rewrite
4 (arith.divf ; 1.0 / sqrt(x)
5 (arith.constant ; cst 1.0
6 (NamedAttr "value" (FloatAttr 1.0(F32)))(F32))
7 (math.sqrt ?x fattr (F32)) ; sqrt(x)
8 fattr (F32))
9 (func_call ?x (NamedAttr "callee"

(SymbolRefAttr "fast_inv_sqrt")) (F32)))

Listing 8. Asserting equivalence of an inverse square root
operation and the fast inverse square root function

Line 2 computes the log2 of the divisor 𝑘 = 𝑙𝑜𝑔2𝑥 and assigns
it to 𝑘 . Line 3 checks if 𝑛 is a power of 2 and the rule will only
be applied if this is the case. Line 4 declares the expression
on line 1 is equivalent to a right shift (arith.shrsi) by 𝑘 by
unionizing them in the e-graph. A union is an Egglog builtin
assigning both expressions into the same equivalence class.

This rule demonstrates both conditional application (only
for powers of 2) and computation within the rule (calculating
log2). The following MLIR code

1 %c256 = arith.constant 256 : i64
2 %result = arith.divsi %x, %c256 : i64

would be transformed as follows thanks to this rule.

1 %c8 = arith.constant 8 : i64
2 %result = arith.shrsi %x, %c8 : i64

7.3 Attribute-Based Matching and Rewriting
Attribute-based matching is a feature that enables optimiza-
tion decisions based on the attributes of MLIR operations
that are explicitly exposed in Egglog by DialEgg. This is par-
ticularly useful for applying specialized optimizations when
certain conditions or flags are set. This case study demon-
strates how DialEgg uses attribute matching to apply the fast
inverse square root approximation, a technique famously
used in the Quake III Arena game engine.

The rewrite rule expressing this optimization is shown in
listing 8. Lines 1–2 define the fastmath<fast> attribute that
we will look for in the e-graph. Lines 3–8 look for the pattern
1/
√
𝑥 where both the division and the square root operations

use the fastmath<fast> attribute. Line 9 rewrites 1/
√
𝑥 as a

call to the fast inverse square root function.
Given the following MLIR code:

1 %c1 = arith.constant 1.0 : f32
2 %dist = math.sqrt %x fastmath <fast > : f32
3 %inv_dist = arith.divf %c1,%dist fastmath <fast >

DialEgg would then transform it to:

1 %inv_dist = func.call @fast_inv_sqrt(%x)

This optimization demonstrates how attributes can be
used to apply domain-specific optimizations.
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1 (rule
2 ((= ?lhs (linalg_matmul
3 (linalg_matmul ?x ?y ?xy ?xy_t)
4 ?z ?xy_z ?xyz_t))
5 (= ?b (nrows (type-of ?y)))
6 (= ?d (ncols (type-of ?z)))
7 (= ?xyz_t (RankedTensor ?d1 ?t)))
8 ((let yz_t (RankedTensor (vec-of ?b ?d) ?t))
9 (union ?lhs
10 (linalg_matmul ?x (linalg_matmul ?y ?z
11 (tensor_empty yz_t) yz_t) ?xy_z ?xyz_t))))

Listing 9. Associativity of matrix multiplication

7.4 Type-Based Cost Model
Type-based cost models allow DialEgg to make optimization
decisions based on the operand’s type. This is useful for
operations where the cost depends on the data shape. This
case study shows how DialEgg can take advantage of the
associativity of matrix multiplication. The cost of performing
a matrix multiplication can be expressed in the cost model
using type information as shown earlier in listing 5.
Listing 9 encodes of matrix multiplication associativity

in Egglog. Lines 2–4 matches for the form (𝑋𝑌 )𝑍 . Line 8
creates the output type using the result of the two helper
functions nrows and ncols seen earlier. Lines 9–11 unionize
the expressions (𝑋𝑌 )𝑍 and 𝑋 (𝑌𝑍 ) in the e-graph.
The computational cost of matrix multiplications varies

depending on associativity. Consider the matrices 𝑋 with
size 𝑎 × 𝑏, 𝑌 with size 𝑏 × 𝑐 , and 𝑍 with size 𝑐 × 𝑑 . The
algorithmic complexity of multiplying 𝑋 and 𝑌 is𝑂 (𝑎 ·𝑏 · 𝑐)
number of scalar multiplications, as seen in listing 5. The
algorithmic complexity of (𝑋𝑌 )𝑍 is𝑂 (𝑎 ·𝑏 ·𝑐 +𝑏 ·𝑐 ·𝑑) while
the algorithmic complexity of 𝑋 (𝑌𝑍 ) is𝑂 (𝑏 · 𝑐 · 𝑑 + 𝑎 · 𝑏 · 𝑑).
Using the cost model for matrix multiplication, and the

associativity rule above, Egglog is able to find the best way
to group matrix multiplication to lower the algorithmic com-
plexity, depending on the shapes. Given the following MLIR
code which performs 270, 000 multiplications:

1 %xy = linalg.matmul ins(%x, %y:
tensor <100 x10xi64 >, tensor <10 x150xi64 >)
outs(%xy_init) -> tensor <100 x150xi64 >

2 %xyz = linalg.matmul ins(%xy, %z:
tensor <100 x150xi64 >, tensor <150 x8xi64 >)
outs(%xyz_init) -> tensor <100 x8xi64 >

DialEgg will produce the following transformed program:

1 %yz = linalg.matmul ins(%y, %z:
tensor <10 x150xi64 >, tensor <150 x8xi64 >)
outs(%yz_init) -> tensor <10x8xi64 >

2 %xyz = linalg.matmul ins(%x, %yz:
tensor <100 x10xi64 >, tensor <10x8xi64 >)
outs(%xyz_init) -> tensor <100 x8xi64 >

which only requires 20, 000 multiplications! This is achieved
thanks to the ability to encode in Egglog a single associativity
rule, and a cost model for matrix multiplication operations.

7.5 Multiple Rules and Recursive Rewrite Rules
The real power of equality saturation lies in its ability to

consider all possible transformations at once. In addition,
rules can be made recursive, enabling the handling of nested
structures. In this case study, we demonstrate a set of rules,
including one recursive, for optimizing polynomial evalua-
tion with Horner’s method.

Horner’s method is an algorithm for efficient polynomial
evaluation. For a polynomial of degree n: 𝑃 (𝑥) = 𝑎𝑛𝑥

𝑛 +
𝑎𝑛−1𝑥𝑛−1 + · · · + 𝑎1𝑥 + 𝑎0. Horner’s method rewrites it as:
𝑃 (𝑥) = 𝑎0 +𝑥 (𝑎1 +𝑥 (𝑎2 + · · · +𝑥 (𝑎𝑛−1 +𝑥𝑎𝑛))). This requires
only𝑛multiplications and𝑛 additions, compared to𝑛(𝑛+1)/2
multiplications and 𝑛 additions in the naive approach.
Rules To implement Horner’s method in Egglog, we need
a set of rules that work together to transform polynomial
expressions. These rules are presented in listings 10 to 12.
Listing 12 implements the commutative, associative, and dis-
tributive properties of addition and multiplication. These
rules allow DialEgg to rearrange terms, which is crucial for
grouping like terms in the polynomial. The distributive rule
in particular factors out common terms, creating the nested
structure of Horner’s form. Listing 10 defines exponentia-
tion recursively. This rule is crucial for breaking down high-
degree terms in polynomials into lower-degree ones. Finally,
the identity rules (listing 11) will allow equality saturation
to simplify the resulting expressions.
Cost model Listing 13 sets the cost of exponentiation
much larger than the cost of multiplication, which is in turn
much larger than the cost of addition. This cost function
plays a crucial role in guiding the optimization process. Eg-
glog is incentivized to prefer solutions that minimize the
use of these expensive operations. This aligns perfectly with
the goal of Horner’s method, which reduces the number of
multiplications and eliminates exponentiation operations.
MLIR code example Equipped with all these rules, Dia-
lEgg will turn the following MLIR code, which represents
the polynomial 𝑐 + 𝑏𝑥 + 𝑎𝑥2

1 %c2 = arith.constant 2.0 : f64
2 %x2 = math.powf %x, %c2 : f64
3 %t1 = arith.mulf %b, %x : f64 // bx
4 %t2 = arith.mulf %a, %x2 : f64 // ax^2
5 %t3 = arith.addf %t1, %t2 : f64 // bx+ax^2
6 %t4 = arith.addf %c, %t3 : f64 // c+bx+ax^2

into this more efficient MLIR code:
1 %t0 = arith.mulf %x, %a : f64 // ax
2 %t1 = arith.addf %b, %t0 : f64 // b + ax
3 %t2 = arith.mulf %x, %t1 : f64 // x(b + ax)
4 %t3 = arith.addf %c, %t2 : f64 // c+x(b+ax)

A compiler would be hard-pressed to implement such an
optimization in MLIR, given the non-trivial number of rules
that need to interact with one another. In contrast, while a
bit verbose (due to MLIR’s level of detail), Egglog and Dia-
lEgg offer a natural way to express this type of optimization.
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1 (rule ; x^n = x * x^(n - 1)
2 ((= ?lhs (math_powf ?x (arith_constant (NamedAttr "value" (FloatAttr ?n ?t)) ?t) ?t))
3 (>= ?n 1.0))
4 (( union ?lhs (arith_mulf ?x
5 (math_powf ?x (arith_constant (NamedAttr "value" (FloatAttr (- ?n 1.0) ?t)) ?t) ?t) ?a ?t))))

Listing 10. Recursive definition of exponentiation.

1 (rewrite (arith_mulf ?x (arith_constant (NamedAttr "value" (FloatAttr 1.0 ?t)) ?t) ?t) ?x) ; x*1=x
2 (rewrite (math_powf ?x (arith_constant (NamedAttr "value" (FloatAttr 0.0 ?t)) ?t) ?t) ; x^0=1
3 (arith_constant (NamedAttr "value" (FloatAttr 1.0 ?t)) ?t))

Listing 11. Identity rules for floating point multiplication and power.

1 (rewrite (arith_addf ?x ?y ?a ?t) ; x+y = y+x
2 (arith_addf ?y ?x ?a ?t))
3 (rewrite (arith_mulf ?x ?y ?a ?t) ; x*y = y*x
4 (arith_mulf ?y ?x ?a ?t))
5 (rewrite ; (x+y)+z = x+(y+z)
6 (arith_addf (arith_addf ?x ?y ?a ?t) ?z ?a ?t)
7 (arith_addf ?x (arith_addf ?y ?z ?a ?t) ?a ?t))
8 (rewrite ; (x*y)*z = x*(y*z)
9 (arith_mulf (arith_mulf ?x ?y ?a ?t) ?z ?a ?t)
10 (arith_mulf ?x (arith_mulf ?y ?z ?a ?t) ?a ?t))
11 (rewrite ; mx + nx = x(m + n)
12 (arith_addf (arith_mulf ?m ?x ?a ?t)
13 (arith_mulf ?n ?x ?a ?t) ?a ?t)
14 (arith_mulf ?x (arith_addf ?m ?n ?a ?t) ?a ?t))

Listing 12. Commutativity, associativity, and distributivity
rules for floating point addition and multiplication

1 (function arith_constant (AttrPair Type) Op)
2 (function arith_mulf (Op Op AttrPair Type) Op

:cost 100)
3 (function arith_addf (Op Op AttrPair Type) Op)
4 (function math_powf (Op Op AttrPair Type) Op

:cost 100000)

Listing 13. Cost function for the pow and mult operations

Equality saturation will take care of the complex interactions
required between these different transformations to generate
the most cost-effective program in the end.

8 Evaluation
The evaluation aims to show that DialEgg applies to various
use cases, alone or with other optimizers.

8.1 Experimental Setup
All benchmarks are run on a MacBook Pro with an Apple M1
Pro chip, running MacOS 14.5. They are expressed in MLIR,
from LLVM version 18.1.4. When using DialEgg, the bench-
marks are translated automatically to Egglog, optimized with
equality saturation, and transformed back into MLIR code.
They are then lowered to the LLVM dialect and turned into

the LLVM IR. A binary is produced, using the -O3 LLVM op-
timization level. For each experiment, the median of eleven
runs is reported, and the output is verified.

8.2 Benchmarks and MLIR Dialects Used
DialEgg is evaluated on five benchmarks which combine
different MLIR dialects as shown in table 1. All benchmarks
make use of scf for loops, func for functions, and tensor to
create tensors. Some use arith to express arithmetic expres-
sions and math for functions such as sqrt. Linalg is used
by two benchmarks to express operations such as matrix
multiplication. Using multiple dialects shows DialEgg is able
to compose dialects, a key feature of MLIR. The MLIR code
for each benchmark can be found in the artifact.

Converting a 4KRGB image to grayscale For each pixel,
a weighted sum approximates the human eye’s sensitivity to
different colors: (77 ·𝑅 +150 ·𝐺 +29 ·𝐵)/256. This benchmark
is likely to benefit from the rewrite rule presented in listing 7
to optimize the division by a power of 2.

Vector normalization The benchmark computes the in-
verse of the norm of 1 million 3D vectors. It is compiled
with fast-math mode, which benefits from the rewrite rule
presented in listing 8 to optimize the square root.

Evaluating polynomials Evaluating polynomials can be
optimized using Horner’s method, as discussed in section 7.5.
This benchmark iterates over 1, 000, 000 3rd-degree polyno-
mials and evaluates each at a given point. The rewrite rules
presented in listings 10 to 12 are expected to be beneficial.

Matrix multiplications (2MM and 3MM) 2MM com-
putes (𝐴 ·𝐵) ·𝐶 while 3MM computes ((𝐴 ·𝐵) ·𝐶) ·𝐷 . These
benchmarks showcase DialEgg’s ability to leverage algebraic
properties expressed as rewrite rules in listing 9.

8.3 Performance Results
For each benchmark, three optimization approaches are com-
pared against a baseline without MLIR optimizations: (1)
DialEgg-optimized code, (2) MLIR canonicalization, and (3)
both DialEgg and canonicalization. An extra optimization
setup is used for 2MM and 3MM which will be discussed
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Table 1. Benchmarks and their properties. The rightmost columns show the number of operations used from each dialect.

Benchmark Input size scf func tensor arith math linalg

Image conversion 3840 × 2160 × 3 4 3 5 17 0 0
Vector norm 1, 000, 000 × 3 2 7 7 27 1 0
Polynomial 1, 000, 000 × 4 2 3 6 13 2 0
2MM 𝐴=100×10, 𝐵=10 ×150,𝐶 =150×8 0 2 2 0 0 2
3MM 𝐴=200×175, 𝐵=175×250,𝐶 =250×150, 𝐷 =250×10 0 2 3 0 0 3
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Figure 3. Speedup of DialEgg and the default canonicaliza-
tion pass from MLIR. Higher is Better.

later. Canonicalization refers to the default existing optimiza-
tions applied by each dialect in the MLIR codebase. DialEgg
produces results that are at least as good as those achieved
by traditional optimizers, as evident from the results in fig. 3.

For image conversion, we can see that the default optimiza-
tions available (Canonicalization) in MLIR do not achieve
any speedup. DialEgg achieves a speedup between 1.14× and
1.20× over the baseline, thanks to the optimization of the
division by a power of 2. Vector norm behaves in a similar
way, although with a more modest speedup of around 1.08×
for DialEgg. The speedup is due to the optimization of the
inverse-squared root applied by DialEgg.

For Polynomial, DialEgg achieves a speedup of 1.12×when
combined with canonicalization. This is thanks to the use of
Horner’s method which is encoded in DialEgg.

Finally, 2MM and 3MM exhibit the largest speedup among
all. The reason is that the rewrite changes the algorithmic
complexity of the problems, depending on which order the
matrices are multiplied. The number itself is not so meaning-
ful since it could be made arbitrarily large by choosing more
extreme matrix sizes. Nonetheless, this example illustrates
precisely why having the ability to apply equality saturation
on MLIR programs offers much potential for future work.

8.4 MLIR Optimization Versus Egglog Optimization
We now turn our attention to the complexity of implement-
ing an optimization discussed in this paper without Egglog:

matrix associativity. When implemented in MLIR, this opti-
mization, expressed in 12 lines of Egglog in listing 9 requires
over 120 lines of C++ code. This includes creating a new
pass with an operation rewrite pattern and registering it
with an existing optimization driver. This paper argues that,
despite the relative verbosity of the rules, it is much simpler
to express such optimization with DialEgg than in MLIR.

Furthermore, the hand-written MLIR optimization might
actually lead to sub-optimal performance. For 2MM, this
hand-written MLIR optimization matches the performance
of DialEgg as can be seen in fig. 3. However, when used
with 3MM, the optimization fails to achieve the same level of
performance as DialEgg. The reason is that the hand-written
MLIR optimization only operates at a local level in a greedy
manner. It only ever considers the case of three matrices at
a time when deciding how to associate the operations. In
contrast, equality saturation is able to consider all possible
associations of matrix multiplication operations, resulting
in a global optimum and higher performance.

This final result demonstrates the advantage and potential
for using equality saturation to express optimizations oper-
ating on MLIR operations. DialEgg offers a solution to the
problem of integrating MLIR and equality saturation which
will open up potential future research in this field.

8.5 Compilation Time and Scalability Study
Table 2 shows a breakdown of DialEgg’s compilation time.
This includes the conversion between MLIR and Egglog
(through a file), the time spent in Egglog, including the time
spent saturating within Egglog, and the time back from Eg-
glog to MLIR. As can be seen, the majority of the time is
spent in Egglog. The table also includes the canonicalization
time in MLIR and the time taken by the hand-written MLIR
pass in C++ which optimizes the matrix operations order.

A limited scalability study is shown using 3MM as a start-
ing point, by chaining more matrix operations. As expected,
saturation time increases exponentially with the number of
operations. In contrast, the time to run the greedy MLIR C++
pass is linear with the number of operations as expected.
The scalability of the system is dependent on the scala-

bility of equality saturation. In some cases, a long compile
time might be acceptable, in others not. This is a well-known
trade-off of equality saturation, independent of this work.
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Table 2. Benchmark compilation and e-graph saturation times.

Benchmark #Rules #Ops MLIR →Egglog Egglog Saturat. Egglog→MLIR Canon. C++ MLIR Pass

Img Conv 1 29 0.3ms 14.6ms <0.1ms 0.1ms 0.2ms N/A
Vec Norm 1 44 0.4ms 21.6ms <0.1ms 0.1ms 0.2ms N/A
Poly 8 26 0.3ms 18.9ms 2ms 0.2ms 0.2ms N/A
2MM 5 6 0.2ms 8.6ms <0.1ms 0.1ms 0.1ms 0.1ms
3MM 5 8 0.2ms 8.7ms 1ms 0.1ms 0.1ms 0.1ms
10MM 5 22 0.2ms 14.4ms 4ms 0.3ms 0.1ms 0.2ms
20MM 5 42 0.3ms 41.3ms 23ms 0.7ms 0.2ms 0.3ms
40MM 5 82 0.4ms 296.2ms 235ms 1.4ms 0.3ms 0.6ms
80MM 5 162 0.5ms 4939.3ms 3732ms 6.8ms 0.6ms 1.3ms

9 Limitations and Discussions
MLIR interfaces support DialEgg does not currently sup-
port MLIR interfaces. However, they could be supported
using a similar way attributes are handled in DialEgg.
Correctness It is the user’s responsibility to define rules
that do not break the program semantics. This could be deli-
cate in the presence of opaque operations with side effects
(e.g., load/store). One could use a conditionally enabled rule
if the opaque operation is side-effect-free using the Memo-
ryEffectsOpInterface when support is added to DialEgg.
Cost model and analysis complexity As seen, the cost
model can make use of typing information. Capturing more
complex behavior, e.g., cache-related performance for loop
optimization, might be harder and perhaps best left to the
classical MLIR pipeline using the affine dialect for now. How-
ever, an exciting direction could be to use the lattice opera-
tions supported by Egglog. The original Egglog paper [16]
features an implementation of “points-to analysis”. A similar
approach could be used to express other complex analyses.

10 Related Work
The closest related work, SEER [2], automatically synthesizes
efficient HLS (High-Level Synthesis) code with MLIR and
the Egg [13] equality saturation library. While SEER and Di-
alEgg both use e-graphs for optimization, SEER achieves this
using the affine and scf dialects. In contrast, DialEgg is more
general and applicable to any dialect. Furthermore, to the
best of the authors’ knowledge, SEER is unavailable publicly
while DialEgg is an open-source tool publicly available.

PDL (Pattern Definition Language) is a pattern detection
dialect in MLIR where patterns are represented as MLIR
operations. The transform dialect [6] exposes fine-grained
MLIR transformations, giving the user the ability to drive
the optimization process. In contrast, DialEgg uses a more
declarative approach where users provide equivalences in
the form of rewrite rules. Equality saturation takes care of
how to apply transformations automatically.

Equality saturation has also been used before with LLVM,
to validate the correctness of the code produced [10]. DialEgg

is a superior approach since the optimized code is guaranteed
to be valid by construction— assuming no bug in the rewrites,
which is the same limitation for prior work [10].

Ruler [8] uses equality saturation to infer rewrite rules,
which is orthogonal to the work presented in this paper.

Szalinski [7] uses equality saturation to optimize CAD
models expressed with constructive solid geometry. Several
approaches [9, 14] have used equality saturation to optimize
tensor programs. Diospyros [12] finds efficient vectorized
code with irregular structure using equality saturation and
symbolic execution. LIAR [3] uses a minimalist functional IR
and equality saturation to find code idioms. All these prior
works use specialized compilers with custom integrations
of equality saturation. This is the type of work that could
have benefited from a tool like DialEgg, which combines, in
a dialect-agnostic way, MLIR and equality saturation.

11 Conclusion
This paper has presented DialEgg, a dialect-agnostic ap-
proach to express MLIR constructs in Egglog. DialEgg is
able to automatically convert MLIR code to Egglog, apply
various optimizations expressed as rewrite in a subset of the
Datalog language, and transform the code back to MLIR.

This paper has shown that it is straightforward to encode
optimizations with DialEgg. Equality saturation can combine
multiple transformations and can find a globally optimal
solution that is beyond the reach of classical MLIR passes.
DialEgg lowers the barrier to entry for researchers to

experiment with equality saturation in the context of MLIR.
It offers full integration with a modern equality saturation
library, Egglog, which the authors hope will unleash the
power of equality saturation to the MLIR community.
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A Artifact Appendix
A.1 Abstract
This artifact [15] contains a source tree and a Dockerfile.
Docker will create and build a container that includes Dia-
lEgg and its dependencies, LLVM, MLIR, and Egglog. This
container is designed to reproduce this paper’s experimental
results (fig. 3 and table 2).

A.2 Artifact Check-List (Meta-Information)
• Algorithm: An equality saturation-based MLIR optimizer
translating back and forth from MLIR to Egglog.

• Compilation: Docker builds and loads the artifact. We used
Docker version 27.3.1.

• Data set: All data sets are handwritten for DialEgg and
included in the artifact.

• Run-time environment: This artifact has only been tested
on MacOS 14.5 with an ARM SoC, and in a docker container
based on the image packaged with this artifact.

• Hardware: Any system that supports Docker, or an ARM
SoC if you wish to reproduce the runtime results in the
paper as closely as possible. 16 GB of RAM is preferable for
building LLVM and MLIR to avoid linking issues. We ran the
experiments on a 10-core M1 Pro SoC with 16 GB of RAM.

• Metrics and Output: For each benchmark, we share the
total number of operations from each dialect, the number
of rules, runtimes of optimization passes, compilation times,
and saturation times.

• Experiments: Resulting runtime and compilation times of
various optimization passes, including using DialEgg.

• Howmuch disk space required (approximately)?: 15GB
• How much time is needed to prepare workflow (ap-
proximately)?: 5 hours, varies depending on the CPU/SoC.

• How much time is needed to complete experiments
(approximately)?: 1 hour, varies depending on the CPU/-
SoC.

• Publicly available?: Yes
• Code licenses?: Apache-2.0 license
• Archived?: DOI: 10.6084/m9.figshare.27668247.v3

A.3 Description
A.3.1 How Delivered. The artifact is available on both figshare
(DOI: 10.6084/m9.figshare.27668247.v3) and the AzizZayed/dialegg-
cgo-artifact GitHub repository.

A.3.2 Hardware Dependencies. A system with at least 16 GB
of RAM. An ARM SoC if you wish to reproduce the runtime results
in the paper as closely as possible.

A.3.3 Software Dependencies. A Docker installation.

A.4 Installation
Build the Docker image and run a Docker container from the ar-
tifact root directory using the following commands. Run the first
command below to build the image and the second to run and enter
a container with the image.

$ docker build -t dialegg-img .
$ docker run --name dialegg --rm -i -t dialegg-img bash

All the following commands assume you are inside the running
Docker container. From within the /dialegg directory, run the
build script to build DialEgg and all its dependencies. Afterward,
run the source commands to prepare the environment to run the
experiments.

$ ./build.sh
$ source .env
$ source venv/bin/activate

A.5 Experiment Workflow
A.5.1 Runtime Performance. To gather the data from fig. 3,
run the following commands from within the /dialegg directory
in the container. The first command runs the optimizers for each
benchmark. The second command collects the runtime performance
data and stores it. The third command plots the performance data
and generates fig. 3.

$ python bench/opt.py
$ python bench/bench.py
$ python bench/plot.py

A.5.2 Compilation Time. The following command collects and
presents the compilation time data in table 2.

$ python test/timer.py

A.6 Evaluation and Expected Result
A.6.1 Number of Rules and Operations. Each benchmark has
its own directory in the bench directory. The data from table 1 is
gathered by counting the number of relevant operations in the file
bench/<benchmark>/<benchmark>.mlir. The number of rules in
table 2 is gathered by counting the number of rules in the egg file:
bench/<benchmark>/<benchmark>.egg.

A.6.2 Runtime Performance. The generated plot for fig. 3 can
be found in the bench directory named speedup.pdf.

A.6.3 Compilation Time. The data from table 2 will be output
by the command given above in appendix A.5.2.

A.7 Reusability
DialEgg can be used to optimize any MLIR file with equality satu-
ration, as long as each operation has a single result. The core of the
artifact is egg-opt, the binary produced under the build directory.
This is an mlir-opt tool that can take any supported MLIR code,
and a corresponding egg file and perform equality saturation-based
optimization.

A.8 Known Discrepancies
DialEgg was originally evaluated on Mac OS 14.5 running on an
ARM CPU, but for ease of reproducibility, this artifact is designed to
run in a Docker container running Ubuntu Linux. This change has
led to known differences in the results reported in the paper. The
size of the Vector Norm and Polynomial benchmarks was increased
from 1, 000, 000 to 100, 000, 000, due to noise introduced by the
virtualization.
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